The Applied Science and Technology graduate group is administered by the College of Engineering. The program is aimed at students with research interests that are truly interdisciplinary. Faculty members associated with the program are drawn from several departments within the College of Engineering, as well as from the departments of Physics, Chemistry, Chemical and Biomolecular Engineering, Statistics, and Mathematics. Topics of interest include the properties and applications of nanostructures; thin-film and interface science; microelectromechanical systems (MEMS); short-wavelength coherent radiation; X-ray micro-imaging for the life and physical sciences; plasma physics and plasma-assisted materials processing; laser-induced chemical processes; laser probing of complex reacting systems; ultrafast phenomena; particle accelerators; nonlinear dynamics; chaotic systems; numerical methods; and computational fluid mechanics and reacting flows, etc.

Within the program students design their own course of study in consultation with their advisors, choosing from the vast array of technical offerings throughout the campus. The chosen coursework should prepare the student for interdisciplinary research. Students in the PhD program may pursue a Designated Emphasis (DE) such as the DE in Nanoscale Science and Engineering (DE NSE); Energy, Science, and Technology (DE EST); and Computational Science and Engineering (DE CSE).

Graduate research in the AS&T Program benefits from state-of-the-art experimental facilities on the Berkeley campus and at the Lawrence Berkeley National Laboratory. Among these facilities is the National Center for Electron Microscopy, which has the world's highest resolution high-voltage microscope; a microfabrication lab for student work involving lithography; MEMS ion-implantation and thin-film deposition; an integrated sensors laboratory, femtosecond laser laboratories; optical, electrical, and magnetic resonance spectroscopies; short-wavelength laser and Xray research laboratories; an unparalleled variety of material, chemical, and surface science analytic equipment; and a soft X-ray synchrotron dedicated to materials, chemical, and biological research using high-brightness and partially coherent X-rays. The interdisciplinary collaborative nature of the AS&T Program provides ample opportunity to develop new research directions by making the best use possible of these facilities and the other research instrumentation available to AS&T faculty.